In vitro osteogenic differentiation of marrow stromal cells encapsulated in biodegradable hydrogels.

نویسندگان

  • Johnna S Temenoff
  • Hansoo Park
  • Esmaiel Jabbari
  • Tiffany L Sheffield
  • Richard G LeBaron
  • Catherine G Ambrose
  • Antonios G Mikos
چکیده

Novel hydrogel materials based on oligo(poly(ethylene glycol) fumarate) (OPF) crosslinked with a redox radical initiation system were recently developed in our laboratory as injectable cell carriers for orthopedic tissue engineering applications. The effect of OPF hydrogel material properties on in vitro osteogenic differentiation of encapsulated rat marrow stromal cells (MSCs) with and without the presence of osteogenic supplements (dexamethasone) was investigated. Two OPF formulations that resulted in hydrogels with different swelling properties were used to encapsulate rat MSCs (seeding density approximately 13 million cells/mL, samples 6 mm diameter x 0.5 mm thick before swelling) and osteogenic differentiation in these constructs over 28 days in vitro was determined via histology and biochemical assays for alkaline phosphatase, osteopontin and calcium. Evidence of MSC differentiation was apparent over the culture period for samples without dexamethasone, but there was large variability in calcium production between constructs using cells of the same source. Differentiation was also seen in samples cultured with osteogenic supplements, but calcium deposition varied depending on the source pool of MSCs. By day 28, osteopontin and calcium results suggested that, in the presence of dexamethasone, OPF hydrogels with greater swelling promoted embedded MSC differentiation over those that swelled less (43.7 +/- 16.5 microg calcium/sample and 16.4 +/- 2.8 microg calcium/sample, respectively). In histological sections, mineralized areas were apparent in all sample types many microns away from the cells. These experiments indicate that OPF hydrogels are promising materials for use as injectable MSC carriers and that hydrogel swelling properties can influence osteogenic differentiation of encapsulated progenitor cells.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deterministic encapsulation of single cells in thin tunable microgels for niche modeling and therapeutic delivery

Existing techniques to encapsulate cells into microscale hydrogels generally yield high polymer-to-cell ratios and lack control over the hydrogel's mechanical properties. Here, we report a microfluidic-based method for encapsulating single cells in an approximately six-micrometre layer of alginate that increases the proportion of cell-containing microgels by a factor of ten, with encapsulation ...

متن کامل

3D bioprinting of methacrylated hyaluronic acid (MeHA) hydrogel with intrinsic osteogenicity

In bone regenerative medicine there is a need for suitable bone substitutes. Hydrogels have excellent biocompatible and biodegradable characteristics, but their visco-elastic properties limit their applicability, especially with respect to 3D bioprinting. In this study, we modified the naturally occurring extracellular matrix glycosaminoglycan hyaluronic acid (HA), in order to yield photo-cross...

متن کامل

Self-assembling peptide hydrogels modulate in vitro chondrogenesis of bovine bone marrow stromal cells.

Our objective was to test the hypothesis that self-assembling peptide hydrogel scaffolds provide cues that enhance the chondrogenic differentiation of bone marrow stromal cells (BMSCs). BMSCs were encapsulated within two unique peptide hydrogel sequences, and chondrogenesis was compared with that in agarose hydrogels. BMSCs in all three hydrogels underwent transforming growth factor-beta1-media...

متن کامل

Biological behaviors of muscarinic receptors in mesenchymal stem cells derived from human placenta and bone marrow

Objective(s): Cells perform their functional activities by communicating with each other through endogenous substances and receptors. Post-translation, stem cells function properly in new host tissue by carrying specific cell surface receptors. We aimed to characterize muscarinic receptor subtypes in mesenchymal stem cells (MSCs) together with osteogenic and adipogenic...

متن کامل

Bone marrow stromal cells and their application in neural injuries

Background: This article reviews experimental and clinical studies in which neural injuries repaired with bone marrow stromal cells. History: Bone marrow contains two kinds of stem cells: hematopoietic and nonhematopoietic (stromal) stem cell. In vitro studies indicate that bone marrow stromal cells have the capacity of differentiation into other cells (such as neural cell) under treatment wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 70 2  شماره 

صفحات  -

تاریخ انتشار 2004